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J. Phys. A: Math. Gen. 19 (1986) 3631-3643. Printed in Great Britain 

Amplitude ratios and p estimates from general dimension 
percolation moments 

Joan Adlert, Amnon Aharonyt, Yigal Meiri and A Brooks Harris$ 
tSchool of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 
$ Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA 

Received 19 November 1985 

Abstract. Low concentration series are generated for moments of the percolation cluster 
size distribution, r, =(SI-') ( s  is the number of sites on a cluster) for j = 2,. . . , 8  and 
general dimensionality d. These diverge at pc  as r, - A , ( ~ ~ - p ) - ~ l  with y, = y, = 
y +  ( j  - 2)A, where A = y + p is the gap exponent. The series yield new accurate values 
for A and p, A = 2.23 *0.05,2.10* 0.04,2.03 *0.05 and p = 0.44 *0.15,0.66 *0.09,0.83 * 0.08 
at d = 3, 4, 5. In addition, ratios of the form A,A,/A,A,, with j +  k = m + n, are shown 
to be universal. New values for some of these ratios are evaluated from the series, from 
the E expansion ( E  = 6 - d )  and exactly (in d = 1 and on the Bethe lattice). The results 
are in excellent agreement with each other for all dimensions. Results for different lattices 
at d = 2, 3 agree very well. These amplitude ratios are much better behaved than other 
ratios considered in the past, and should thus be more useful in characterising percolating 
systems. 

1. Introduction 

Despite the extensive literature on exact power series expansions for percolation (see 
Essam (1972) for an introduction to the series derivations and Adler et a1 (1983) for 
more recent analyses) there remain several aspects of percolation concerning which 
few or no series results have been obtained to date. In particular, there are no direct 
estimates of the exponents p of the percolation probability and A (= y + p ) ,  the so-called 
'gap exponent', for dimensions d 3 4. Furthermore, in all dimensions there are very 
few series estimates of critical amplitude ratios and most of the existing ones have very 
large uncertainties. 

As regards the exponent 0, the values which exist in the literature are rather 
unsatisfactory. As seen in table 1, values quoted in the review by Stauffer (1979) 
strongly disagree with those obtained from the E expansion and with indirect estimates 
based on series and scaling relations (from de Alcantara Bonfim et a1 (1980, 1981), 
Adler (1984) and Adler et a1 (1985)). 

Universal amplitude ratios were reviewed in detail by Aharony (1980) who also 
obtained E expansions for them. Some agreement was found between some series 
estimates at d = 2 and extrapolations of the E expansion, but results for some other 
amplitude ratios (e.g. C'/C-  for the mean cluster size below and above p , )  varied 
considerably, particularly in Monte Carlo simulations and were difficult to extrapolate 
from the E expansion down to d = 2, 3. It is thus desirable to find universal amplitude 
ratios which are less sensitive. In principle, percolation systems may belong to different 
universality classes, e.g., depending on the range of correlations among the occupation 
probabilities. Amplitude ratios should play an equal role to that played by critical 

0305-4470/86/173631+ 13$02.50 @ 1986 The Institute of Physics 363 1 



3632 J Adler, A Aharony, Y Meir and A B Harris 

Table 1. Estimates for the exponents A and p. 

d 5 4 3 

A (our series) 
A ( E  expansion)b 
y (previous series) 

p from series rJr; 
p ( E  expansion) 
p (mainly M C ~ )  
p (from R F I M ) ~  
p (Jan et al)‘ 
p (Grassberger)‘ 

P = A - y  

2.03 f 0.05 
2.02 i 0.005 
1.02 * 0.03” 
0.83 * 0.08 
0.83 * 0.1 
0.835 * 0.005 
0.7 
0.84 
0.67 

2 .10 i  0.04 2.23 f 0.05 
2.08 10.02 2.16*0.04 
1.44 * 0.05” 1.79 i 0.10 
0.66 * 0.09 0.44 i 0.15 
0.67 10 .1  0.44 2 0.1 
0.64 * 0.02 0.34 * 0.04 
0.5 
0.64 
0.56 
0.65 * 0.04 0.43 * 0.04 

a From Adler et ol (1984). 

and y estimates and scaling. 
E expansion, calculated from results of de Alcantara Bonfim et al (1981) using their v 

From Stauffer (1979). 
Deduced via scaling from the results of Adler et al (1985) for the random field Ising 

model and the dilute antiferromagnet. 
‘Jan et a/  (1985). 

Grassberger (1986). 

exponents in identifying the universality class of a given system. In particular, both 
should be studied in realistic continuum porous media in order to find out if these 
belong to the same universality class as the uncorrelated bond or site percolation for 
which most theoretical calculations have been done. 

In the present paper we pursue these aims by undertaking a comprehensive study 
of the moments I‘, of the percolation cluster size distribution. If n , ( p )  is the probability 
of a site (at concentration p of sites or of bonds) belonging to a cluster of s sites, then 

rj = ( & I )  = 1 sJn , (p) .  
S 

Using the ‘ghost’ field H, rj can be derived as 

where Pm(p ,  H) is the probability of a site belonging to the infinite cluster. In 0 2 we 
use scaling arguments to show that, for p <pc ,  

r, = Aj(pC-p)-’J[  1 + a , ( p , - ~ ) ~ l +  . . .] 
with 

7, = y + ( j - 2 ) A  (1.4) 
where y describes the divergence of the mean cluster size Tz, while A =: y + p, with 
Pma ( p  - p J P  at H = 0, p > pc. The validity of equation (1.4) was implied by the 
renormalisation group of Harris er a1 (1975) and was proven for the Bethe lattice by 
Essam et a1 (19761, who also present numerical evidence to support it in d = 2 and 
d = 3. The exponent A I ,  expected to be the same for all j ,  represents the leading 
confluent correction. 

Section 2 also shows that amplitude ratios of the form A,A,/ A,A,, withj + k = m + n, 
should be universal. The E expansion is then used, in 0 3, to estimate A2A4/A:,  
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A,A,/A:,  A:A,/A: and A2A5/A3A4 and the results are summarised in table 2 and 
figure 1. Exact calculations, both at d = 1 and on the Bethe lattice, are described in 04. 

Section 5 describes our derivation of the low concentration series for rJ and their 
analysis which yields the gap exponent A. The analysis of series for quantities such 
as T,/T: yields direct estimates for the exponent p. Alternatively, p can be obtained 
from p = A - y using values obtained for A and y from our series. Our results are 
summarised and compared with alternative evaluations in table 1. The agreement with 
the E expansion values is excellent. 

It turns out that series estimates of the individual amplitudes A, are not very 
accurate. However, the universal combination AJAk/A,A, can be obtained directly 
from series for rJrk,/rmrn, which should have a regular leading behaviour near pc.  
Our series analysis of these ratios is described in 0 6 and the results are shown in figure 
1. We observe that the agreement between the series and the E expansion values is 
extremely good for all ratios and all dimensions. This agreement is significant in view 
of doubts one might have that a 4,  field theory (Fucito and Marinari 1981, Fucito 
and Parisi 1981) might not be suitable for an E expansion. 

After completing these calculations we received a preprint from Grassberger (1985) 
and became aware of a letter of Jan et a1 (1985) who calculate p in four and four, 
five dimensions respectively. Grassberger (1985) finds p = 0.62 in four dimensions 
(corresponding to p c  = 0.1583 *0.0002) but does not make any allowance for corrections 
to scaling. We propose to investigate this discrepancy in the future?. Jan et a1 (1985) 
find /3 = 0.67 ( d  = 5 )  and p = 0.56 (d  = 4), somewhat below our and the E expansion 
estimates and close to the old Monte Carlo values. They also find lower v values than 
the E expansion (de Alcantara Bonfim et a1 1981), v = 0.51 (d  = 5, cf 0.57) and v = 0.64 
( d  =4,  cf 0.68). Thus their final df= d - p / v  values, 3.69 (d = 5) and 3.12 ( d  =4) ,  are 
not all that different from values calculated from our p and E expansion v values, viz 
dr=3.53 ( d = 5 )  and d,=3.06 ( d = 4 ) .  

2. Scaling 

As explained in detail by Aharony (1980), Pa( p ,  H )  must obey the asymptotic scaling 
form 

where t = ( p , - p ) / p c ,  Pa and H are all small. The function y = h ( X )  contains two 
non-universal parameters, ha and X,, defined via ho = h ( 0 )  and h( - X o )  = 0. Rescaling 
h by ha and X by X,,  the resulting equation of state 

(2.2) 
is universal. All the critical amplitudes may be related to X ,  and ha and combinations 
of them in which X ,  and h, cancel are thus also universal. 

H I P $ =  h ( t / P z P )  (2.1) 

i(2) = L ( X / X , )  = h, 'h (X)  

Solving equation (2.2) for P, one finds 

P J f ,  H )  = ( t / X o ) @ . f ( X ; H / h o t A )  (2.3) 
where A = Sp = p + y and where .f is a universal function. The individual details of a 
specific problem, e.g. site or bond percolation or (short) range of correlations, enter 
only into X ,  and h,. Taking derivatives of (2.3), we now find that the leading divergence 
of r, is indeed described by the exponents yJ of equation (1.4). Also, we identify 

A, = ( - X , " /  h , )J - 'X ,Pf 'k - l ' (0 ) .  (2.4) 
? See note added in proof. 
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Clearly this implies that when k + j  = m + n one has 
A ,A / A,A, = j% -1 )P~-I )/ji m- 1)jc n - 1 

i k  

and the RHS is universal. In what follows we shall thus ignore the factors of Xo and 
ho and concentrate on the universal functions h‘ and f. 

For t >  0 ( p  < p c )  we have P,+O as H +O. Thus the argument X = t / P z B  in (2.1) 
is infinite. As discussed by Aharony (1980), the function h(X) has the large-X 
expansion 

m 

h(X) = C 77nXY-(n-1)P, (2.6) 
n = 1  

From equation (2.1) 

a H / d P ,  = tYX-Y[Gh - (l /p)Xh’(X)].  

rz = aP,/aH = cYxY/[ah - (l/p)xh’(x)]. 
Thus 

Using (2.5), this becomes 

(2.9) 

and we identify A,  = 1/ 771. It is now straightforward to take further derivatives and 
to find 

A3’27121771 

(2.10) 

A,= (7207477277:- 120q,77:+36077:q:-252077377:77, -t 16807:)/77: 
etc. 

variable by w, equation (2.3) should be replaced by 
So far we discussed only the asymptotic form. Denoting the leading irrelevant 

P,(t, H, w )  = ( t / X 0 ) ~ f [ X ~ H / h , t A ,  wt”q (2.11) 

where A, is the exponent associated with the renormalisation group flow of w towards 
its fixed point value of zero. The function is still universal and the only additional 
non-universal amplitude concerns the magnitude of w. 

Taking derivatives of (2.11) with respect to H will now yield 

r, = A,t-YlrJ-l)(O, wt”i) 

= A,~- ’J [F’ - ’ ) (O ,  O)+f(’-131)(0, O)wtAl+.  , .] (2.12) 
where the coefficient f u - ’ - ’ ’ ( O ,  0) is again universal. This explains the general form 
(1.3) and implies that ratios like uJ/uk are also universal (Aharaony 1980). 

3. Epsilon expansion 

Aharony (1980) used the q + 1 limit of the q-state Potts model, equivalent to the bond 
percolation problem, to derive E expansions in d = 6 - E dimensions of the function 
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L(2) and for the coefficients vl, v 2  and q3. Extending those results to the next term 
(and setting X ,  = h, = l), they may be summarised as 

771 = 2’-* + 
. 565 

where 

The results for d > 6  stick to the mean-field (or Bethe lattice) values, obtained by 
setting E = 0 in these expressions. 

Substituting in equations (2.10), this yields (up to order E ’ )  

12542 

4889 

1016 

(3.2) 

Table 2 contains estimates of these ratios for various dimensions, based on different 
Pad6 estimates. We note that the E expansion of the ratio A:/A2A4 is the same (to 
order E ’ )  as that of (2-/3)/3. In the fourth row of table 2 we thus list values of 
(2-p) /3 ,  using estimates of p from table 1. 

Apart from A:A,/A:, all the Pad6 estimates agree reasonably well with each other 
and we used a (subjective) average to represesnt them in figure 1. The coefficients in 
the E expansion of A:A5/A: are rather large, and therefore some of the Pad6 estimates 
are not reasonable. We list values only for the estimate which looks similar to the 
series. Note that the amplitude ratios listed here are not all independent of each other. 
For example, 

Thus, one may choose the better behaved E expansions (e.g. for A2A4/A:) and derive 
the others from them. 

We now turn to the correction terms, equation (1.3) or (2.12). As discussed in 
detail by Aharony (1980) and Aharony and Ahlers (1980), the renormalisation group 
equations to leading order in E always yield results of the form 

2(  Y, - Y y /  E 

r, = AjtCY~ 0 1 + W t A l  (3.4) 
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Table 2.  Estimates of amplitude ratios. 

Dimension 

Ratio Estimate 5 4 3 2 i 

3(1-0.1429~+0.015 47E2) 
3/( 1 + 0 . 1 4 2 9 ~  i 0 . 0 0 5 ~ ~ )  
3(1-0.0346~)/(1+0.1083~) 
3 / ( 2 - ~ )  
Series (hypercubic) 
Largest approximant 
Smallest approximant 
Series (FCC, triangular) 
~(1-0.0381E+0.00549E2) 
;( 1 + 0.0381 E -0.004 0 3 ~ ~ )  
5 (1+0 .106~) /3 (1+0 ,144~)  
Series (hypercubic) 
Largest approximant 
Smallest approximant 
5 ( 1 - 0 . 1 8 1 ~  + 0 . 0 2 6 4 ~ ~ )  
5 / (  1 +0.181 E o.@067E2) 
5(1-0 .0373~) / (1+0.1437~)  
Series (hypercubic) 
Largest approximant 
Smallest approximant 
15/( 1 +0.3238s + 0 . 0 3 7 1 ~ ~ )  
Series (hypercubic) 
Largest approximant 
Smallest approximant 

2.62 2.33 2.13 2.03 2.02 
2.61 2.30 2.04 1.82 1.63 
2.61 2.30 2.03 1.80 1.61 
2.56 2.24 1.92 1.61 1.5 

2.70 2.73 2.04 1.69 1.333 
2.58 2.15 1.88 1.59 1.333 

1.61 1.58 1.56 1.56 1.58 
1.61 1.57 1.55 1.53 1.53 
1.61 1.57 1.53 1.51 1.48 

1.60 1.55 1.55 1.47 1.250 
1.60 1.55 1.42 1.10 1.250 
4.23 3.71 3.46 3.49 3.78 
4.21 3.60 3.12 2.73 2.41 
4.21 3.59 3.10 2.70 2.37 

4.20 3.63 3.08 2.36 1.666 
4.10 2.78 2.71 1.48 1.666 

2.62 2.30 1.94 1.61 p 

- - 2.0 1.72 - 

5a 
1.60 1.55 1.46 1.36 3 

sa 
4.15 3.4 2.84 2.12 9 

11.02 8.35 6.5 5.19 4.23 
10.80 8.12 5.48 3.65 Y 

11.20 10.20 5.81 3.98 2.222 
10.50 7.30 4.21 2.10 2.222 

- 20a 

a Exact 

where y,? is the mean-field value of yT For small t, the RHS can be expanded and we 
identify a, in equation (1.3) as 

4 = 2 w ( Y, - Y,") / E + 0 ( E 1 

4 / ak = 

(3.5) 

(3.6) 

i.e. 

- y;) / ( Y k  - 7; ) * 

To order E ,  y, = y + ( j  - 2)A = 2 j  - 3 + ~ / 7  and thus y, - y," = ~ / 7 ,  independent of j .  We 
therefore conclude that 

a,/ ak = 1 + O( E ) .  (3.7) 

In particular, combinations like T,Tk/TmTn, with j + k = m + n, will have no correction 
to scaling to this leading order (the coefficient of t A l  would involve uj + a k  - a, - a, = 
W E ) ) .  

4. Exact results 

In one dimension and on a Bethe lattice, which should correspond to dimensions 
larger than six, the upper critical dimension, we were able to find the amplitude ratios 
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exactly. In one dimension, the 'free energy' is easily calculated: 

(1 -d2 
S 1 - p  e-H 

f(p, H )  = 1 p 2 (  1 - p)' e-rH = (4.1) 

and one can find the amplitudes explicitly: 
A,, = n!. (4.2) 

On a Bethe lattice of coordination a the free energy is (Fisher and Essam 1961) 

A tedious but straightforward calculation leads to 
A 2 = f  
A -1 

3 - 2  (-4) (4.4) 
A ,  = f x ( - f) x ( - $) 

etc, up to a multiplicative constant which depends on U. We can see that the amplitude 
ratios correspond to those obtained by Aharony (1980) in six dimensions and to the 
E = 0 values in equation (3.2). 

5. Series exponents 

In this section we analyse low concentration series for r, = (s'-'), where s is the number 
of sites in bond percolation clusters (sB). The derivation of the series, via lattice animal 
data, is a straightforward extension of the case j = 2, described in detail by Fisch and 
Harris (1978) and analysed by Adler er a1 (1984)t. 

The series take the general form 

r, = 1 + c  Gj(i, k ) d k p '  (5.1) 
1, k 

and the coefficients G,( i, k) are presented in the appendix, for j = 3-8. 
The individual series were analysed by the method of Adler er a1 (1983), using as 

input the values of p c  and Al from Adler et a1 (1984) for d > 4  and pc=0.2486 for 
d = 3 (Grassberger, private communication). All the series are expected to diverge at 
the same pc.  

We first analysed series for individual series and table 3 lists our estimates for y,, 
j = 2, . . . , 5 .  From these we deduced our direct estimates of A, listed in table 1. These 
were then combined with known values of y to derive p = A  - y. In addition, we 
derived and analysed the series for T3/T:, which should diverge as ( p C - p ) - @ .  

Our value of A at d = 3 agrees well with that quoted by Essam and Gwilym (1971), 
A = 2.2 * 0.3. Our various estimates for p agree well with each other and with those 
from the E expansion. All these estimates disagree with the previously quoted Monte 
Carlo values (Stauffer 1979). While new Monte Carlo estimates would be nice to 
confirm our resolution of this discrepancy it seems quite clear that estimates of p - 0.8 
and p - 0.65 for d = 5 and d = 4 percolation should be quoted in future. 

t Note that the series for the number of bonds in a bond cluster (BB), quoted by Adler et al (1984), should 
not include a constant (p-independent) term. The analysis of this series was, however, correct. We also 
note that the BB series presented there are an extension of the Gaunt and Ruskin (1978) series and the SB 
series an extension of the Fisch and Hams (1978) series. 
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Tnble3. Estimates for yj (errors are of order iO.10). 

Y2 1 1.19 1.44 1.79 
Y3 3 3.24 3.51 4.05 
Y4 5 5.26 5.64 6.27 
YS 7 7.29 7.77 8.49 

6. Series amplitude ratios 

We used the series for Tj to generate series for ratios like TjTk/T,T,, for the four 
cases listed in table 2 and shown in figure 1. Our new series were used for hypercubic 
lattices at d = 1, 2, , , . , 9  and d = 100, and the series given by Essam et al (1976) were 
used for T2r4/T;, counting bonds on bond clusters on the triangular and FCC lattices. 
We note that the FCC series are rather short (to order p9 only) but nevertheless we 
attempted their analysis. We then used direct Pad6 approximants for the ratio series 
to estimate their values at p = p c .  We note that this method does not require any 
assumptions about exponent values. Also, p c  is used only once in the calculations and 
the results are not very sensitive to small variations in its value. This probably results 
from the fact that the leading singularity was divided out and that correction terms to 
the ratio are very small (as predicted in § 3). Indeed, we were not successful in our 
attempts to identify such corrections by direct D log Pad6 analysis of derivatives of 
the ratio series. For comparison purposes we also tried to evaluate the Aj for each 
moment series individually (using the method described by Gaunt and Guttman (1974)), 
but found that owing to the large uncertainties in y and /3 the errors were large and 
the convergence was rather poor. 

The results are plotted in figure 1 and some are presented in detail in table 2. We 
have evaluated nine central and near-diagonal approximants to each ratio, discarding 
those with obvious defects and averaging over the remaining ones. (We never needed 
to discard more than two approximants and in most cases none were discarded.) We 
quote the central values and most extreme approximants in the table for each ratio 
and dimension on the hypercubic lattices. In the figure we indicate central values by 
a filled circle and extreme approximants by error bars. Where no error bars are present 
on the graph it is because the convergence errors are smaller than the size of the dot. 
We note that the estimate on the triangular lattice has error bars comparable to those 
on the square lattice?. The approximants to the FCC lattice ratio, however, have quite 
a wide range and the estimate -2.0 comes from a choice of five approximants (2.09, 
2.14, 2.014, 1.989 and 1.886), whereas an additional four (-0.875, 2.77, 3.9 and 2.81) 
give an average of 2.2.  The poor convergence is presumably due to the shortness of 
the series. 

Explicit analysis of our amplitude ratio series at d = 1 and d = 100 gave excellent 
agreement with the exact results of § 4 and served as a confirmation of the reliability 
of our series evaluation. As can be seen from table 2 and figure 1, the results in other 
dimensions also show excellent agreement between different lattices and with the E 

expansion. However, we note that the finite series cannot reproduce the sharp break 
at d = 6. Instead, the series values already begin to deviate slightly from the mean-field 

+The central estimate is 1.72 with a range 1.67-1.75. 
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values at d = 9. In spite of all this, even the maximum deviation, at d = 6, is rather 
small. Similar roundings were observed for critical exponents and are partly caused 
by the failure of the (relatively) short series to respond to the logarithmic corrections 
at d = 6. As indicated by the error bars on the graph, the different Pad6 approximants 
are quite close here, this being a systematic error. For d = 3 and d = 4 the E expansion 
results fall well within the range of Pad6 approximants. As might be expected, the 
agreement between the series and the E expansion values becomes somewhat poorer 
for low dimensions, d < 3 ,  but even there the amplitude ratios studied here behave 
much better than those considered before. 

The agreement found here supports the feeling that the E expansion estimates of 
amplitude ratios are useful even at low dimensions. In view of this, we feel that better 
series and Monte Carlo estimates should be attempted for other amplitude ratios as 
well. We note, however, that the accuracy achieved in our present analysis, via series 
multiplication, is not possible for ratios like C'/C-, involving both high and low 
concentration series. 

7. Conclusion 

Our main results are summarised in tables 1 and 2 and in figure 1. Our new values 
of A and p at d =4,  5 agree with the E expansion and should replace older values. 

Our main emphasis here is on the excellent agreement between series and E 

expansion values for the various amplitude ratios. This justifies the use of E expansion 
values as far as d = 2 ( E  = 4) and encourages revised series and Monte Carlo studies 
of other ratios. 

Our configuration of universality for the amplitude ratios also supports the expecta- 
tion that the same ratios should be observed in more complex systems, e.g. continuum 
percolation, percolation of rods, cracks, etc. It would be interesting to see these checked 
either in computer or in real experiments. A study of several moments of the cluder 
size distribution (and not only of the lowest one) in such experiments should thus be 
encouraged. 
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Appendix 

Coefficients of G,(Z, k )  which give r, via equation (5.1). 
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j=5 
S < ! . l  = C . .  

GI:.:,= 8 .  

3 ..l = 2 .  
G14.4 = 2.4 
> 4.::=-7.a 
G ( J . 2  = 1 .1 
3 . 4 . 1  = z . 4  

5 5 . 4  = -1 .4  
G E . : , =  5.: 
GI:.: = 7 . 7  
5 ? , l  = -4 .e  
5 . C . C . .  1 . 7  
2 , C . T  1 - 4 . 8  
G 0.4 = 2.G 
2 t.:.,= :.7 
G t b . 2 1  = - I .  7 
j t . 1  z - 7 . 7  

G l 7 . 2 !  =-1.9 

G < 8 .  7 )  =-4. XN:, 
G i E . h i =  ?.7:4 
G ( E . 5 ) =  1.824 
G 1 8 . 4 1 =  1.744 
G (U. :I =-6.092 
G(U,2 )= -5 .447  
G I 8 . 1 ) =  7 . m : )  

G 19.8)  =-1.198 
G lV .7 !=  1.281 
G ( 9 . 6 ) =  2.17: 
G l9 .51=  2.404 
G l9 .41=  2.105 
G 19. j) =-1.729 
G ( Y . 2 ) =  2.478 
G (9. 1 I = - I .  <:153 

OI9 .9 !=  1.816 

G ! l O . U ) =  4.131 
G ( 10, 7 )  = 2 .  822 
G ( 10 -  6 )  =-2. 649 

G l l l , l l ) =  1.597 

G (  11,711-3. 137.4 
G l 1 1 . 6 ) =  3.1736 
G l 1 1 . 5 ) =  5.8964 
Gl11.4)=-8.6;13 
G (  1 1 , 5 ) =  2.443956 
G ( 11 .2 )  1-2.522486 
G I l l , l I =  9 .017274 

G ( 5 . 5 I =  8.5 
G 15.4) =--1.9 
G15 .1 )=  9.8 
G !5 .2 )=  5.6 
G(5 .11=-4 .6  
G ( 6 . 6 1 =  2 .9  
G (6.5!=-8.Z 
G l 6 . 4 ) =  5.580 
G l 6 . 7 ) =  :.179 
G ( 6 .  2 ) =-: . 13:l 
G t 6 .  1 )  = - I .  441 

G ( 7 . 4 ) =  1.14W3 
G 17, I) =-5.79;2 
G 6 7 . 2 )  =-2.9821 
F 1 7 . 1 ) =  1.9449 
G(8 .81=  Z.9568 

0 1 8 < 5 ! =  2.88 
G18q41=- l .  1C 
GI8.  T > = - l .  448 
G I 8 , 2 ) =  1 .481  
G I B . l ) =  5.7:7 
G ( 9 . 9 ) =  8.729 
G l9 .  E !  =-:.886~:18 
G 19. 7 1 = 4. 87065 
G ! 9 . & ! =  7.97472 
G(9.51=-5.96472 
G (9 .41 =-2.751.57 
G ! 9 ,  Y ! = - 2 .  18909 

G 19.1 V =- 1. ?C:)> 16 
6 ' 9 . 2 )  = 7 .  764% 
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j = 6  

Z . 1 . l  = 4 . 2  

G ( I . ? i =  1.: 
5<:.::=-1.5 
5 I . 1  = 4.1 
1 4 . 4  = 1 . 1  

3 ( c , ; > =  5.8'22 
G . 4 .  1 .  = 2.481 0 
G > 5 . 5 ' =  7.1~.444 
G t d . 4  =-1.71494 

G (9 .1  ) =-1.82594351 
G ( l I : I q  I O ) =  1.514985 
G ( 1 I:) 9 )  =-e. (:I35 147 1 

G(1~:1.7)=-2.22899845804444E+lO 

G ( 11 I 5 )  =-1 .65477445266645E+ll 
G(11.4)=  4.47774998444440E+1~1 

j = 7  j = 8  

G (7. 4)  =-I .  ~ 7 0 0 6 7 6 8 0 ~ r O l ~ O l ~ E + l ~ ~  
G(7.:)=-4.648513852C10OC11~E+09 
G (7 .2 )=  4.4743779001:10(100~+1:~8 
G (7, 1 ) = I .  187369372001:ICll)E+1:19 
G ( 8 , 8 )  = 1 .7 184895440l:lOl~0E+ IO 
G (8.7)=-7.3951:13564800001jE+l(J 
G 18,bI = 1. ~l3545935480l:l~l~lE+l1 
G (8.5 I =-2. 450 141 121:I0000OE+ 10 
G~8,4~=-4.0~172288281:1~:ll:lOE+11:1 
G ( 8 - 7 )  =-7.7J458842000000E+09 
G ( 8 . 2 )  = 3.2947 1350921:~00oE+ l o  
G ( 8 ,  1)=-7. 1573221941)0000E+09 
G ( 9 . 9 ) =  9.9202554881:10~100E+10 
G (9.Q)=-4.875760947201:~00E+ll 
6 ( 9 . 7 ) =  8.~:11542922752001:iE+ll 

6 ( 9 , 3 ) =  1.449451501.86440E+ll:l 
G(9.2)= 5.40909953487331E+ll 
G ~ 9 . 1 ~ ~ - 3 . 5 4 5 8 2 8 5 4 5 3 8 4 4 S E + l l  
G (  10, l o ) =  5.2435044147201)0E+ll 
G ~1~~.9)=-2.892942l:l7488001:IE+l2 
G ( 10.8 1 = 5.472047927Q4000E+ 12 
G (10, 7 )  =-7. 9159l~l525568l~~~ll~,E+1? 
G( 10.4) =-1.51796858796800E+12 
G ( 1 Cl, 5 )  = 4.4 125605 198647 1 E+11 

G ( 10. 1 ) = 4.554853570481:100E+11 

G ( 1 1.8) 1-2.335344 1 1401 920E+1 j 
G < 1lI71=-4.42878902528000E+11 
G ( 1 1 . 4 ) -  1. 1~?315891:123041)E+13 
G ( 1 1.5) =-4.67535224173445E+lZ 
G ( l 1 . 4 1 ~  7.52933423148020E+13 ~~ 

G (  11.1 I = 7.~~168O13486116OOE*13 
G I  11. 2 ,  =-1.947091..7337279E-14 
G : 11. 1,  = 9.381 141Q513756OE+ 1: 

Note added in proof: We have been informed that the published version of Grassberger (1986) will contain 
the values pc = 0.160 13 *0.000 12 and p = 0.65 * 0.04 for d = 4, which are in substantial agreement with our 
estimates. 
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